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ABSTRACT

This thesis investigates aliasing probability in Built-in Self Test (BIST) proce-

dures, in which a Linear Feedback Shift Register (LFSR) is used as a pseudo-random

pattern generator, with a full-adder as a circuit-under-test (CUT). The Signature

Analyzer implements a Multiple Input Signature Register (MISR) as a test response

compressor.
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I. INTRODUCTION

Advances in semiconductor manufacturing technology permit increased com-

plexity of VLSI circuits, and therefore increase the difficulty of testing devices, in

particular, those aspects of chip testing such as cost, time, and test data volume.

One approach to alleviate testing problems to reduce both cost of test gen-

eration and test time is to incorporate built-in self test (BIST) circuitry into the

circuit-under-test during the initial design. A BIST circuit requires that the test

pattern generation and output response evaluation are incorporated into the circuit

under test. In this technique, test patterns are applied internally to the circuit un-

der test (CUT) and their output responses are evaluated without the use of external

test equipment. There are three methods to generate test patterns [Ref. 1]:

* Manual Generation - The test patterns are written by a design or test engineer

with regard to the fault coverage.

" Pseudo-random Pattern Generation - Pseudo-random test patterns are gener-

ated by hardware built into the test equipment or actually embedde d in the

CUT or by a software algorithm.

" Algorithmic Test Generation - A computer program is used to generate the

test patterns, and also deals with fault coverage.

The method used in BIST for evaluating response is most frequently performed

by signature analysis. [Ref. 2]

The most popular approach used for BIST today is pseudo-raidom pattern

generation. Pseudo-random patterns are usually generated by a linear feedback shift
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register (LFSR) and are applied to the circuit under test. The output responses from

the circuit under test are then compressed through multiple-input shift register

(MISR) to form a signature. By analyzing the signature, it can be determined

whether a circuit under test is faulty or not. Because test patterns are generated

by a built-in random pattern generator, the time consuming effort of test pattern

generation can be removed from the design cycle by using a BIST circuit. Since

signature analysis compresses response data and compares the signature only once,

the difficulty of analysis and storage of huge amounts of test response data can be

avoided. Furthermore, BIST has another important advantage in that the circuit

under test is fed with random test patterns at the functional clock rate. This

advantage allows high speed testing to be performed using internal test equipment

built in the circuit under test.

In designing a built-in self test circuit, the following factors need to be consid-

ered [Ref. 3]:

" Performance Degradation - The maximum operating frequency may be re-

duced because of the additional propagation delay caused by the self-test cir-

cuit.

" Overhead - The added self-testing circuitry will increase the chip area, and

this will increase the manufacturing cost. Therefore, the overhead should be

kept as small as possible.

" Fault Coverage - The ratio between the number of faults detected by using the

set of test-pattern given is also an indicator of the quality of the test. A cov-

erage between 90/ to 95% is desired for satisfactory performance. Basically,

fault coverage depends on the effectiveness of the input sequences.



9 Testing of the Added Circuitry - The circuit which added to the chip also

should be tested.

* Test Application Time - This will affect the final cost.

The test pattern is selected based on the above factors. If a complicated

pattern or exhaustive pattern set is selected, the fault coverage could be increased,

but circuitry will then become more complex and require more difficult testing

parameters. The overhead will increase and more test time may be necessary. If a

simple test pattern or subset of exhaustive pattern set is selected, the added circuitry

can be easily tested. This results in lower overhead and shorter test time, but lower

fault coverage. The major problem of this BIST technique is the possibility that

correct and faulty circuits give the same signature, known as aliasing errors. These

errors depend on the structure of compressor, the structure of CUT, the type of

fault and the test patterns [Ref. 4].

The main purpose of this study is to set guidelines and to evaluate testing

strategies used for BIST. In Chapter II, we investigate the testing concepts used

in BIST and annotate their advantages and disadvantages. In Chapter III, aliasing

probability is discussed. Chapter IV presents testing requirements and tools used

in this thesis. Conclusions are given in the last chapter.
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II. BUILT-IN TEST BACKGROUND

A. TEST GENERATION AND VERIFICATION

Test generation is used to generate a sequence of input test vectors to verify the

correctness of the circuit. Test verification measures the effectiveness of a given set

of test vectors. A complete set of test vectors may guarantee a 100% fault coverage

but may not be practical to execute when the size of test vectors is high. All of

these considerations should be taken into account when designing a test strategy.

As mentioned in Abadir and Regubati [Ref. 51, test generation should consist of

three main activities:

* A good descriptive model should be selected for a system under consideration

to determine the behavior of the system in all possible combination modes of

operation.

* A fault model must be developed in order to describe the types of faults

identified during test generation. The important factor in selecting a fault

model is to maximize the percentage of faults covered by the mc lel and to

minimize the test cost associated with the use of the model. Usually, a good

fault model is found as a result of a trade-off between these two parameters.

9 The most essential part of the BIST process is to generate a test sequence to

detect all the faults in the fault model. Two major problems occur when gen-

erating a test sequence. To detect a certain fault in a digital circuit, Iie fault

must be excited, e.g., a certain test sequence must be applied that will force a

faulty value to appear at the fault location. The test must be sensitive to the
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fault, e.g., the effect of the fault must be propagated through the network to

an observable output.

The fault must be able to be located following its detection. The strategy of

testing can be changed depending on whether the requirement to detect the fault

only, or to detect and locate the fault. The manual generation of test patterns is

a difficult, time consuming task even for moderate circuits. The challenge of fault

simulation and test verification has received a lot of attention, while the task of

test generation has been partially overlooked. Fault simulation has been the goal

of test generation, yielding a quantitative measure of test effectiveness. In other

words, a test sequence is considered good if it can detect a high percentage of the

possible faults in the circuit under test. Fault simulation should be able to predict

how a circuit will operate, therefore, the simulation program must be comprehensive

enough to detect it. The fault model and test pattern generation are reviewed below:

9 Fault Simulation and Fault Model

Two major sources of failures occurring in integrated circuits are defects in the

manufacturing process and component wearout. The frequency of occurrences

and the relative importance of a fault depends on the circuit type and the

manufacturing technology used. By using any given physical fault mechanism

in a circuit, it is possible to determine its effect on the logical behavior of the

circuit. There are several advantages in using logical fault models rather than

physical fault models [Ref. 6]:

- Once a logical fault model adequately reflects the physical failure modes

of a circuit, the fault analysis becomes a logical problem.

- It is possible 'o construct logical fault models that are applicable to

many different technologies. In this case, fault analysis becomes relatively
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technology-independent. The computer programs can then be written for

fault simulation and test generation without losing their usefulness when

changes in technology occur.

- By using a logical fault model, it is possible to perform a test for faults

in cases when the effect on circuit behavior is not clear.

- A logical fault model often covers a large number of different physical

faIts, resulting in a substantial decrease in the complexity of fault anal-

ysis. There are five classes of logical faults [Ref. 7]:

* Input stuck-at faults - When each of the input lines may be stuck-at-0

or stuck-at-1.

* Output stuck-at faults - When any number of output lines may be

stuck; each line may be stuck-at-O or stuck-at-1.

* Input bridgings - When any two input lines may be bridged. Bridging

(short circuit) faults have become increasingly important for VLSI

devices.

* Output bridgings - All bridgings between any number of output lines.

* Feedback bridgings - Bridgings between one input and one output

line.

A commonly used fault model is the stuck-at model. A faulty gate input in

a circuit is modeled as a stuck-at-0 (s-a-0) or stuck-at-1 (s-a-i). When a certain

number of test vectors are applied to the CUT, the percentage of fault coverage

depends on the number of s-a-0 or s-a-1 faults detected by the test patterns.

The stuck-at model does not take into account all possible defects, but acts

as a global type of model. This model assumes that a logical gate input or output

is fixed to either a logic 0 or a logic 1. For example, the pattern applied to the

6



fault-free AND gate in Figure 2.1 has an output of 0, since the A input is 0 on the

A input and 1 on the B input. But the pattern in Figures 2.2 shows an output

equal to 1, since the A input is perceived as a 1 even though a 0 is applied to that

input. Therefore, the pattern shown in Figure 2.2 is a test for the A input (s-a-i),

because the good machine responds differently from the faulty machine [Ref. 8].

Some techniques are available to reduce the complexity of fault simulation, but it is

still a time consuming and expensive task. Testing of a sequential machine is more

difficult than with a combinational machine as the output of a sequential machine

depends on both the present input but also on the internal state of the machine.

One problem in Complementary Metal Oxide Silicon (CMOS) using this model

is that a number of faults could change a combinational network into a sequential

network. If this occurs, the combinational patterns are no longer effective in testing

the circuit. As mentioned previously, single stuck-at fault test sets seem to provide

acceptable levels of fault coverage for devices fabricated with current technology.

The major problem in developing test sets for multiple fault detection is the large

number of possible faults. For example, it is easy to verify that 10 nodes in a circuit

may have 20 single stuck-at faults, 180 double faults, 960 triple faults, and 59,048

possible stuck-at patterns [Ref. 9]. For VLSI circuits containing in excess of 10,000

nodes, explicit test generation for anything other than single faults is impractical.

In summary, fault simulation in VLSI circuit verification has some difficulties.

Increasing circuit complexity will increase the time consumption for the simulation

of all gate-level faults. However, consideration of only single-stuck faults may be

inadequate. Multiple faults, non-stuck faults and suspended temporarily at intervals

type faults are important but difficult to investigate [Ref. 10].

A commonly used test pattern generation is the D-Algorithm, developed by

Paul Roth [Ref. 11], is widely used to generate a test vector for a given fault.

7



This method is usually used with gate-level circuit models and stuck faults. This

algorithm attempts to construct a sensitized path over which an error signal can

propagate from the fault location to an observable primary output line. Using a

backtracking approach based on the circuit structure, the D-Algorithm searches the

space of possible test patterns for the given fault. This method, in its most general

form, can always find a test vecLor that can sensitize a single fault. In the case where

the fault is undetectable, it can prove that no test pattern exists. The D-Algorithm is

particularly well-suited to test generation for circuits designed using Level Sensitive

Scan Design (LSSD). A large number of practical test generation programs and

algorithms are based on the D-Algorithm [Ref. 6]. In Goel and Rosales [Ref. 11], a

new algorithm called PODEM is described in an attempt to reduce the backtracking

of the D-Algorithm [Ref. 1]. In the PODEM algorithm, the path from an output

node to a primary input is traced and branching decisions are made heuristically

at each step of backtrack. After reaching the primary input, a simulator checks if

the initial objective function has been achieved. If not, the algorithm will repeat

until the target fault is sensitized. For moderately large circuits, PODEM is proved

very effective. With the vast increase in circuit density, the ability to generate

test patterns automatically and to conduct fault simulation with these patterns

has decreased. Therefore, some manufacturers skip these difficult approaches and

accept the risks of shipping a defective product. One approach, called Design for

Testability, is used to reduce the cost of testing [Ref. 8].

B. DESIGN FOR TESTABILITY

Design for testability (DFT) is motivated by the need to reduce the costs of

testing. The main test considerations are difficulty of test generation, test sequence

length, test application cost, fault coverage and fault resolution. The costs involve

S
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the computer time required to generation the test pattern, the personnel to write

the test pattern program and to test the equipment [Ref. 6]. The DFT objective is

to design circuits from the outset to limit in magnitude the test generation efforts

and test verification [Ref. 12]. Testability relies on two concepts, controllability and

observability. Controllability is the ability to set and reset every node internal to

the circuit. Observability is the ability to observe (either directly or indirectly) the

state of any node in the circuit.

Three basic approaches to DFT are ad-hoc testing, a structured design ap-

proach, and built-in self testing. For the purpose of this thesis, the built-in self

testing is the method of concentration. Different techniques in built-in self testing

are described below [Ref. 13].

* Concurrent Built-in Logic Block Observers (CBILBO)

CBILBO offers many distinct features for both test application and response

analysis. First, the test length is the shortest among several BIST methods

studied. Thus, this scheme is suited to test large sequential machines. Sec-

ond, as test generation and signature analysis are separated, the proposed

approach generates exhaustive or pseudo-exhaustive tests for the circuit un-

der test. Thus, no test pattern generation program is necessary. Third, fault

simulation may not be needed. Fourth, the control sequence is very simple

as opposed to other BIST methods. Finally, on-line checking is possible. The

main disadvantage of this proposed method is that the hardware cost is higher

than other methods.

* Built-in Logic Block Observation (BILBO)

The BIST approach using BILBO is used to test sequential machines. In this

method, the signature data collected from the previous tests must be used as

10



the pattern for the next test. BILBO has a slightly lower hardware cost than

the CBILBO approach, however, it results in lower fault coverage. To obtain

a higher fault coverage, a detailed circuit analysis or fault simulation would

be needed.

e Scan BIST

The scan BIST approach is suited to test circuits where a scan path is employed

and is therefore recommended for scan-based designs, although the test length

is longer than the CBILBO or BILBO approach.

e Checking Experiment

The BIST approach using checking experiments have the longest testing time.

Since the testing time increases exponentially with the number of internal

states, it has comparable fault coverage and hardware overhead as other pre-

viously mentioned methods. These BIST schemes are not attractive to test

sequential machines. However, function-dependent checking experiment meth-

ods remain attractive, as lower hardware overhead can be obtained as com-

pared to other BIST methods.

BIST approaches have been applied either partially or fully to commercial mi-

croprocessors and gate arrays, although focusing on DC functional testing. Current

BIST techniques have difficulty achieving high fault coverage for sequential circuits

due to randomness of test patterns and aliasing probability, etc. The focus here is on

the BILBO approach. This technique combines the Scan Path and LSSD concepts

with Signature Analysis [Ref. 14]. The complete test generation and observation

arrangement can be implemented as shown in Figure 2.3 [Ref. 12]. The BILBO

register on the left is used as a pseudo-random sequence generator to generate test

11
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Figure 2.3: The Complete Test Generation and Observation Arrangement

patterns, which will be applied to the combinational circuitry. The BILBO register

on the right is used as the signature analyzer. After a certain number of patterns are

applied, the signature generated by the signature analyzer will be compared against

the reference data [Refs. 8, 12]. In LSSD or other structure design techniques, a

considerable volume of test data is required with the shifting in and out. Using the

BILBO technique, the test data volume may be reduced by a factor of 100 for every

100 test patterns.

C. SIGNATURE ANALYSIS

A test response compression method is used to solve the problem of analyz-

ing and storing the large amount of data required for collecting responses. In this

method, response data R will be compacted to form f(R), including the fault infor-

mation.

The signature analysis technique was introduced in 1977 by hlewlett-Packard

(Ref. 15]. This technique should be used when it is not feasible to compare test

results with reference data. If the reference data is available at the same rate

and synchronized with the data being tested, there is no advantage in using this

technique. The key to signature analysis is to design a network which can excite

12
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itself. For example, microprocessor based boards stimulate themselves using the

intelligence of the processors driven by the memory on the board. The signature

and its collection algorithm should meet four qualitative guidelines [Ref. 11]:

9 The algorithm must be simple enough to be implemented as part of the built-in

test network.

* The implementation must be fast enough to prevent it being a limiting factor

during test time.

o In order to minimize the reference-signature storage volume, the algorithm

must provide logarithmic compression of the output response data.

e The compression method must not lose information, especially if a fault is

indicated by a wrong response from the CUT.

13



1. Signature Analysis

The integral part of the Signature Analysis is the Linear Feedback Shift

Register (LFSR) or Multiple Input Signature Register (MISR) (See Figure 2.4).

Basically, LFSR is built up of latch, with feedback connections. A polynomial

of degree n relates to an n-stage LFSR. The output of the last stage and some

intermediate stages are fedback to the first stage via XOR-gates. The first and the

last stage are at the rightmost and leftmost bit positions respectively, if the register

shifts from right to left. The input from the CUT also feeds to the first stage via

XOR-gate. In general, for any response data stream of length greater than 4, the

probability of missing a faulty response when using an n-bit signature analyzer is

the number of undetected errors divided by the number of total patterns, therefore,

2 _ - M(2.1)
,)n - I

where rn is the number of stages. As most practical circuits have many outputs,

a MISR is used to form a signature of the CUT. The MISR circuit is currently

considered to be the most efficient means of producing a signature of a multiple-bit

data stream [Ref. 16]. The MISR is basically similar to LFSR, the main difference

being the XOR placed between each stage in NIISR and the output of the CUT.

The output of CUT will feed into each stage via these XOR gates.

2. Advantage

The major advantage derived by this approach is that the number of bits

that have to be compared to determine the correctness of the CUT is greatly reduced

[Ref. 17].

14



3. Disadvantage

The major disadvantage of this approach is the difficulty to drive any

information from the signature beyond a yes/no decision. It is difficult enough to

investigate failure from the failing signature. Consequently, a failure in one node will

cause failures to be observed at any other nodes [Ref. 18]. One problem when using

signature analysis is that the volume of information contained in the signature is

less than the volume of information contained in the actual data [Ref. 18]. Another

problem using signature analysis is aliasing error, discussed in Chapter III.

1.5



III. ALIASING IN MISR

Using the signature analysis techniques for testing circuits, considerable amount

of attention has been paid to the aliasing problem: the result found in the signature

analysis register is correct, however, the Circuit Under Test is in fact faulty. We

restrict our discussion for combinational CUT.

Figure 3.1 shows an example of the experimental set-up for signature analysis.

Th,- CUT is supplied with a sct of test patterns that is generated by a LFSR. The

output of the CUT goes into the multiple input signature register (MISR) which is

used as a compressor. Since the CUT is combinational, one does not have to deal

with the initialization of the CUT. In addition, test patterns from LFSR are applied

to the CUT synchronously. Therefore, the first pattern is applied to CUT after

a certain time has passed such that the results are available at the output of the

circuit and available at the input of the MISR. The MISR will change to a new value

and wait for the next value from the CUT. Before starting a test, we must initialize

the LFSR and MISR. When all the test patterns have been applied, the contents of

the MISR form the signature that is compared to a reference value. Following this

comparison, the determination is made whether the circuit response is faulty or not.

1. Aliasing Probability

The problem of aliasing is generally characterized as a probability. The

most widely accepted measure is the probability of aliasing in MISR. It is generally

assumed that the probability of error in each bit is p, i.e., equally likely, and all of

the inputs are independent. Under this assumption, as developed in the previous

chapter, the aliasing probability of an MISR of length k is Pat = 2-1 This result is

16
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Figure 3.1: Experimental Set-up for Signature Analysis

independent of the effect of the fault onl the output of the CUT. The probability

of aliasing depends only on the number of stages of the MISR. Therefore, in order

to reduce the probability of aliasing, the length of the MISR must be increased.

For instance, adding one stage to the MISR reduces the probability of aliasing by a

factor of 2. Unfortunately, the "equally likely" assumption on bit error probability

seems unreasonable for a practical circuit [Ref. 19].

2. Notation and Definition

As mentioned above, the k available outputs of the CUT are connected

to the k MISR inputs. If MISR has more inputs than CUT outputs, the remaining

free MISR inputs will be assumed to be connected to a dummy CUT output [Ref.

201. The operation of the MISR of length k can be described in matrix notation.

The state of the register can )e represented by a coluni vector:

17



Y(t) = [Y1,(t), Y2(t),-. ,k(t)] T .- (3.1)

and the CUT outputs can be represented by a column vector:

X'(t) = [x, (t), x,,(t),. . . xk(t).j * (3.2)

The next state of the register is calculated by multiplying the current state vector

by the next state matrix, C, and adding the current input to the product. Note

that the matrix C represents the MISR polynomial with Ci as coefficients.

Y,(0) C, C2 C3 ... Ck Y, (t -1) X,(M

y2(t) 1 0 0 ... 0 y2(t -1) x2 (t)

= 0 1 0 ... 0 jD (3.3)

Yk(t) 0 0 0 ... 0 yk(tl-1) 1k*(t)
Equation 3.3 can be rewritten as,

kY,') = C. Y( - 1) E .x(t) (3.4)

The autonomous behavior of the register is described by Equation 3.4 by setting all

input bits in Equation 3.2 to zero

x(t) ( = 2(0 = x(t) = 0. (3.5)

In the event of a fault in the CUT, the present output vector can alvays be repre-

sented as the linear superposition of the correct-circuit sequence,

G(t) = [gi(t),g 2 (t), .... ,gk(t )]T (3.6)

and an error sequence,

E(I) = [C1().e 2(), ''" ,ek(t)]T (3.7)
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therefore,
x(t) g1 (t) (l

g2(t) 92(t) e2(t)
i = : ED (3.8)

Xk,(t) gk~t) ek~t)
or

X(t) = G(t) e E(t). (3.9)

In case the fault is not detected in CUT, the

el(t) = e2(t) .... = ek(t) = 0 (3.10)

After n clock cycles, the state of the MISR can be computed by applying iteratively

Equations 3.4 and 3.9. It has been shown that x(t) consists of bitwise modulo-2

sum of the fault free circuit outputs with the assumption that the register is in the

initial state 0 [Ref. 20]. Consequently, an aliasing event occurs if the error sequence

is applied and if there is at least one nonzero element in the error sequence to cause

the MISR to return to an initial state.

3. Aliasing and Markov Process

William and Dahne [Ref. 19] stated that a Markov process is very similar

to that of a sequential machine. This means that a Markov process can be defined in

terms of state transitions. If the input sequence to the signature register is random,

the transition is done with the probabilities of the respective input symlol. When

this process occurs, the transition diagram for thc Markov process has the same

behavior as the operation of the signature register with random signals at the input

is obtained (See Figure 3.2). Based on the facts above, the calculation is made that

the probability of aliasing P in the signature register of length k is

P.1 = 1 (3.11)
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11 (114

Figure 3.2: Transition Diagram of the Markov Process for LFSR Imple-
menting x2 + x ± 1.

In the next chapter, ..c will investigate the aliasing probability by discussing

the results of an experimental work.
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IV. A TEST SYSTEM ARCHITECTURE

A. SYSTEM ARCHITECTURE

The purpose of this section is to investigate the aliasing probability in BIST by

using MISR as a compressor. To illustrate the function, some circuits were connected

as one overall chip. The Linear Feedback Shift Register (LFSR) is used as a test

pattern generator, the Full Adder is used to represent Circuit Under Test (CUT)

and finally, the Multiple Input Signature Analysis (MISR) is used as a compressor to

reduce the cost of testing. We now explain each circuit in the next three subsections.

1. Linear Feedback Shift Register as a Test Pattern Generator

The most popular hardware pseudorandom sequence generator is the Lin-

ear Feedback Shift, Register [Ref. 21]. The binary sequence at cell i is generally con-

sidered to display attributes of pseudorandom binary sequence. The basic structure

of LFSR consists of the shift register comprised of a number of stages, with feedback

connections based upon the primitive polynomials used. Primitive polynomials are

used as a base structure because they can generate maximum length sequences. For

instance, a maximum length sequence generator with n-stages can deliver 2' - 1

distinct n bit long patterns except the zero pattern. Since we have to connect out-

puts of LFSR to inputs of CUT, the number of stages of the LFSR depends on

the number of inputs of CUT. Therefore, the degree of primitive polynomials used

depends on the number of CUT input. For instance, a 4-bit adder requires 8 stages

of LFSR, or primitive polynomials of a degree of 8. Some unique properties of LFSR

that implements a primitive polynomial are listed below [Ref. 21]:

9 Staggering Relationship among successive outputs
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Figure 4.1: LFSR Described by Polynomial x4 + x ± 1

If the contents of the stages are used directly as pattern outputs, then the

bit-streams obtainable from the stages will contain basically the same bit-

sequence, but the bit pattern will be staggered by i cycle in each stage relative

to the one on its left.

e Cyclic Periodicity

The pattern generated will continue through 2 n - 1 cycles, and after that, the

content of stages will become the starting pattern and the sequence will repeat

periodically.

* Exclusion of all 0 pattern

The LFSR should not be initialized with all 0, because in this case the feedback

is always 0. The contents of the stage will remain 0 in all shift cycles and the

LFSR can not generate any nonzero pattern.

* Superposition Effects
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This is a very important property of LFSR which occurs from the influence

of the individual seedbits in a LFSR. The sequence pattern generated by the

LFSR using one initial value is seen to correspond, cycle for cycle, to the XOR

(module-2-add) sum of the patterns in the other sequence pattern that uses

two different initial values.

2. Full Adder as a Circuit Under Test

A Full Adder is a three input, two output combinational circuit that adds

two 1 bit binary numbers. The Full Adder circuit is shown in Figure 4.2. To build

an adder for 4 bit words, the full adder is replicated four times. In the experimental

4-bit Full Adder used, the carry out of one bit was used as the carry into its left

neighbor. The carry into the right most bit is wired to 0. Adders that do not

have this ripply carry delay, and hence are faster, also exist. An example of a 1 bit

full-adder is shown in Figure 4.2. [Ref. 22]

3. Multiple Input Signature Register as a Compressor

The structure of MISR generated is basically similar to an LFSR. The

only difference is that the input stream for each stage feeds through an XOR gate.

Therefore, the number of stages is equal to the number of input XOR gates. In each

test cycle, the output of each stage will be XORed with a bit of an input stream

and shifted to the next stage to the left. The feedback configuration is based on the

primitive polynomials used, and also must be XORed with an input stream. Two

general structures can be considered for implementing MISR: external XOR and

internal XOR [Ref. 20]. We are concerned in this thesis only with the internal OR

structure due to its economical implementation [Ref. 23]. As in LFSR, the structure

of MISR also depends on the output of the CUT. For instance, using a CUT with

k outputs, a k stage MISR is needed. Therefore, primitive polynomials of degree k
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are required. If the CUT has fewer outputs than k, the remaining free MISR inputs

will be assumed to be connected to dummy CUT outputs, i.e., constantly 0 [Ref.

4]. Both the state of the MISR and the CUT output can then be represented by

vectors of k bits.

B. GENERATOR

Software provided by NW Laboratory for Integrated Systems [Ref. 24] was

used to simulate the network. The network description file for LFSR, MISR, and

Full Adder (CUT) was created by using subroutines written in "C". The program

listing may be found in Appendix A. Three generators were created:

" GLFSR - to generate a network description file for Linear Feedback Register

for a given primitive polynomial [Ref. 23].

* GADD - to generate a network description file for a ripple carry adder.

* GMISR - to generate a network description file for Multiple Input Signature

Register for any primitive polynomials.

The network description file may be found in Appendix B.

C. TEST CIRCUIT

Finally, the GTEST combines LFSR, adder, and MISR into one module and

generates a connection description file. Besides, the GTEST can simulate the entire

module. CAD tools used in GTEST include the following:

" NETLIST - creates a flattened netlist representation from an hierarchical rep-

resentation;

* PRESIM - creates a binary circuit representation from the flat circuit repre-

sentation;
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* GEN-TIME - converts a simple timing file in a RNL compatible format;

" RNL - Runs the simulation.

The pattern generator GLFSR, the compressor GMISR, and the CUT will

be combined to form a network description file created by GLFSR, GMISR and

GADD. This description file is converted to an intermediate file by using NETLIST

command. Another conversion occurs when producing a binary file suitable for use

in RNL and is done by the PRESIM command. RNL requires a file that contains a

sequence of RNL commands. At the very least, this command file should load one

or more libraries of standard functions and should read in the binary description of

the circuit created by PRESIM. The command file should also contain command

and definitions of LISP function [Ref. 24].

D. EXPERIMENTAL SET-UP

To demonstrate BIST circuitry, a 4 bit full-adder is used as a Circuit Under

Test (CUT). As each adder has two inputs, an 8 stage LFSR is needed. This would

feed 8 outputs into the CUT. The primitive polynomial used to generate the LFSR

is X8 + X 6 + X 5 + X 3 + 1. As a 4 bit full-adder has 5 outputs, 4 sums and 1 carryout,

a 5 stage MISR is needed. The MISR can be described by the primitive polynomial

X' + x2 + 1. Examples for 2 and 8 bit full-adders will also be shown. Figure 4.3

shows the experimental set-up.

Before starting the experiment, an initial value for the LFSR must be given.

The LFSR generates test patterns that feed into the CUT. Outputs of the good CUT

feed into the MISR and generate signatures to be used as reference data. Next, we

create a faulty CUT with stuck-at-0 by connecting one node in the last bit of the

full-adder to the GND. Figure 4.4 depicts flowcharts of the generation of LFSR.

Adder and MISR. and how all circuits are combined into one module.
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Figure 4.4: The Flow to Generate LFSR, Full-Adder, MISR and the

Combination of all Circuits into One Module
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The derived signature will be compared with reference data to investigate the

possibility of aliasing. To observe aliasing in different fault locations, the node is

connected with Vdd, named stuck-at-i, and the signature compared with the refer-

ence data. The experiment repeats with a different error by changing the connection

of the node. An example of this is to connect the node of the first bit full-adder

with GND and Vdd, respectively.

E. EXPERIMENTAL EVALUATION

To investigate the probability of aliasing, a set of simulations were performed

on three different CUTs with different polynomials of LFSR and MISR. The first

experiment uses a 2 bit full-adder as the CUT. In this experiment, the LFSR is

described by the polynomial x4 + x + 1, and the M ISR is described by the polynomial,

X3 + x + 1. Table 4.1 shows the aliasing probability for s-a-0 and s-a-1 faults with

different initial stale f LFSR. The aliasing probability is calculated by dividing the

undetected occurrances with the total number of test vectors applied to the CUT.

In our experiments, we always use 2' - 1 test vectors for an n-input adder since

the largest adder under test is 8 bits, i.e., with a total of 16 inputs. The location of

the stuck-at fault is at the input of the OR gate as shown in Figure 4.5. This OR

gate is the LSB of the adder. The value for the SUM is equal in the cases of s-a-0,

s-a-i, and fault free circuits. The only difference is the value of the carry-out for the

s-a-1 circuit, which is less than the carry-out value of s-a-0 and fault free circuits.

Therefore, a circuit with a s-a-0 fault will produce test patterns almost equal to

that of the fault free circuit but causes aliasing of a s-a-0 fault to be greater than

in a s-a-1 fault. Table 4.1 also shows that the possibility of aliasing is the same for

different initial states and that aliasing probability in an s-a-0 fault is greater than

with a s-a-1 fault. The second experiment uses a 4 bit full-adder as CUT, with the
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TABLE 4.1: ALIASING PROBABILITY WITH DIFFERENT INITIAL
STATES OF LFSR ON 2-BIT ADDER

Initial State Aliasing Aliasing
s-a-0 s-a-1

1010 0.8667 0.4667

1011 0.8667 0.4667

1101 0.9373 0.3333

1001 0.9333 0.3333

1111 0.8667 0.5333

LFSR described by the polynomial xs + x6 + X 5 + X 3 + 1, and the MISR described

by the polynomial, x' + x' + 1. An interesting case of aliasing was found in this

experiment that showed the potential for the aliasing probability to be 1. Figure 4.6

shows that Pt = I for s-a-0 fault and for s-a-i Pt = 0.01667 (Figure 4.7), where the

position of the stuck-at fault is at the input of the XOR gate in LSB that produces

SUM. Table 4.2 shows the expected value of SUM for good CUT using two different

values of carry-in. Table 4.3 shows the value of SUM for two different faults.

By comparing Tables 4.2 and 4.3, the result shows that if the carry-in in the

good circuit equals 0, the SUM will be equal for both the good and bad CUT.

However, if the carry-in in the good CUT equals 1, then the aliasing probability in

s-a-1 fault equals 1. This is shown in Figure 4.8. For s-a-0, P1 = 0.0333, as shown

in Figure 4.9. In the third experiment observed, the position of the s-a-fault was
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Figure 4.6: The Aliasing Probability in s-a-O Fault
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Figure 4.7: The Aliasing Probability in s-a-1 Fault

TABLE 4.2: EXPECTED VALUE OF SUM FOR GOOD CUT

A B Carry in SUM Carry in SUM

0 0 0 0 1 1

0 1 0 1 1 0

1 0 0 0 1 0

1 1 0 1 1 1
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TABLE 4.3: THE VALUE OF SUM FOR DIFFERENT S-A-FAULTS

Nod. x Node x
A B s-a-0 SUM s-a-1 SUM

0 0 0 0 1 1

0 1 0 1 1 0

1 0 0 0 1 0

11 0 1 1 1

changed to the input of AND gate. Table 4.4 shows the aliasing in s-a-0 and s-a-1

faults for different initial states of I.FSR.

Table 4.4 demonstrates that the actual aliasing probabilities are greater than

the aliasing probability calculated given by the formula in Section 3.3. For example,

if a 5 stage MISR is used, then the aliasing prolibility is calculated as Pt - 1 -

0.03125 instead of 0.0333. A ',i previous experiments, the aliasing in s-a-1 faults is

less than aliasing in s-a-0 faults.

The third experiment uses an 8 bit full-adder as CUT. The LFSR is described

by the polynomial xl6 + x3 + .22 + and the MISR is described by the polynomial

x9 + x' + 1. Table 4.5 shows the aliasing in s-a-0 and s-a-1 faults for four different

initial states of LFSR.

Table 4.5 shows tha, almost all of the probability of aliasing, either in the

s-a-0 fault or in the s-a-1 fault, is equal to 0. These results are close to the aliasing

probability as calculate(] by the formula. For example, with a 9 stage MISR, the
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Figure 4.9: The Alinsing Probability in s-a-O Faults Using 5 Stages MISR
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TABLE 4.4: ALIASING PROBABILITY IN 5 STAGE MISR WITH
DIFFIERENT INITIAL STATES

INITIAL STATE ALIASING ALIASING
s-a-0 s-a-i

10110101 0.3608 0.1373

10001010 0.3176 0.1294

11100111 0.2157 0.1529

11111111 0.2510 0.1098

TABLE 4.5: ALIASING PROBABILITY IN 9 STAGE MISR WITH
DIFFERENT INITIAL STATES

INITIAL STATE ALIASING ALIASING
s-a-0 s-a-I

0110011110000111 0.0000 0.0000

1110101011111111 0.0039 0.0000

1000101000000000 0.0039 0.0000

1111111111111111 0.0000 0.0000
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Figure 4.10: Aliasing Probability in 9 Stages MISR

aliasing probability is 2-' or 0.0019. Figure 4.10 shows a similar signature for good

and bad CUT. The only difference is that the good circuit has higher pattern values

than the circuit with the s-a-0 fault. By observing the aliasing in cases described

above, it is demonstrated that the aliasing in s-a-1 faults is smaller than aliasing

in s-a-0 faults. Also shown is that with increasing numbers of stages of MISR, the

aliasing probability will decrease as stated [Ref. 19].
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V. CONCLUSIONS

The testing of an integrated circuit chip is as important as its design. If the

chip designed is to be used in a network, it is essential to verifty that it performs

the intended function. This testing requirement must be considered during the

design phase. One approach used in this thesis is the Built-In Self Test (BIST),

where a Linear Feedback Shift Register (LFSR) is used as a pseudorandom sequence

generator. An LFSR may generate 2' - 1 test patterns into a circuit under test

(CUT).

Several experiments were performed using a full adder as the cut with a MISR

as a compressor. The set of programs were written to stimulate the LFSR, MISR

and full-adder (CUT) for different polynomials according to the width of the adder.

Several experiments have been performed to investigate the aliasing probability in

MISR by using different polynomials of LFSR, MISR, and different sizes of full-

adder. By using the Markov process approach, it was proven that the probability

of aliasing in n stage of MISR is approximated by 2' [Ref. 19] . The aliasing

observed in the experimentation process closely replicated the formula. In order to

get accurate aliasing probability, an experiment having length 2m - 1 must be tested,

where m is the number of stages of LFSR. For example, using 16 stages of LFSR

required a 65535 test length to use all the test patterns generated by the LFSR.

By observing all of the aliasing probabilities for different circuits, the experiments

allowed us to conclude that the aliasing probability in s-a-1 fault is not always the

same as that in a s-a-0 fault. A second conclusion is that if the number of stages of

MISR is increased, the aliasing will be reduced as expected and the value of aliasing

in either s-a-0 or s-a-1 is greater than the aliasing probability calculated.
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APPENDIX A
Programs For Thesis Project

GADD to Generate Full-Adder

#include <stdjo .h

#define fnanie.len 20
#def ine len 200
#def ins MAXDEG 300
#def ine newline fprintf(fid, "\n")

main(argc, argv)
int argc;
char **argv;

FILE *fjd;
char filebase[fname.len], memory E40];

char fb[fname-len];
char fctfname-len];
char fs[fname..len];

int i, j, k=1, N=O, T;
int xor EHAXDEG];
int maxrii6);
printf("\n\tEnter file name

scanf ("%s",f ilebase);
strcpy(fb,filebase);

strcpy(fs,filebase);
strcpy~fc,filebase);
printf("\n\tEnter number of bits ')

scanf ("U~"AN);

CREATE NETWORK DESCRIPTION FILE.

strcat(filebase," .net");

fid= fopen(filebase,"v");

fprintf(fid, "(load \"lib.net\")\n");
fprintf(fid, "(load \"xor2.net\"')\i");

newline;

fprintf(fid, "I');

fprintf(fid, "node"); newline;
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for(i=N; i>O; i--)

f
fprintf(fid, "aV~d bY~d carin/d carout~d sum%d",i,i,i,i,i);

newline;

neuline;

for(i=N; i>O; i--)

f
fprintf~fid, "invin~di invin%d2 invin~d3",i,ii); newline;

newline;

for~i=N; i>O; i--)

fprintf(fid, "invouty~dl invoutY~d2 jnvout~d3' ,i,i,i); newline;

newli e;
for(j=N; j>O; j--)

fprintf(fid, "noriny~di norinId2" ,j ,j);
newline;

newline;

for(i=N; i>O; i--)

fprintf(fid, "norout~d "4i);

newline;

newline;

{o~=;j~;j-

fprintf(fid, "xoroY~dl xoro~d2" ,j ,j);
newline;

newline;

for(j=N; j>O; j--)

fprintf(fid, 'xoriY~dll xoriY~d12 xori~d2l xori%d22",j,j,j,j);

newline;

newline;

for(j=N; J>O; j--)

fprintf~fid, "nandout%dl nandout%d2" ,j ,j);
newline;
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newline;
for(j=N; j>O; j--)

fprintf(fid, "nandin~dil nandin?.dl2 nandinV~d21 naxidin~d22",j ,j,j ,j);
newline;

newline;
fprintf(fid, ")";newline; newline;

for(i=N; i>O; i--)

{pit~i,"xr ood oidlxr~l n,~~)
fprintf~fid, "(xor2 xoroY~d2 xoriIdll xori%d22 )\n",i,,i,i);

newline;

I
newline;

for(i=N; i>O; i--)

f
fprintf(fid, "(cnand nandout%dl narkdinY~dil nandin%d12 )\n",i,i,i);
fprintf(fid, "(cnand nandout.d2 nandin~d2l nandin%d22 )\n",iji);

newline;

I
newline;
for(i=N; i>O; i--)

fprintf(fid, "(nor noroutYd norinY~dl norinY~d2 )\n",i~i,i);

newline;

for(i=N; i>O; i--)

f
fprintf(fid, "(cinvert invout%dl invin%dl)\n",i,i);
fprintf~fid, "(cinvert invoutY.d2 invinY~d2)\n",i~i);
fprintf(fid, "(cinvert invoutYd3 invin~d3)\n" ,i,i);
newline;

I
newline;

for (i=N; i>O; i--)

{pit~i,"cnetad oidl"ii;nwie
fprintf(fid, "(connect a'/d xori7.dii)",i,i); newline;
fprintf~fid, "(connect bYrid xori~d12)"i,i); ene;lne
fprintf~fid, "(connect caridl xoriY~d21)",i,i); newline;
fprintf(fid, "(connect xoro~d2 soriYd)",ii); newline;
neplinffde(onc ood;uzYd"ii;nwie

newline;
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for (i=N; i>O; i--)

{pit~i,"cnetadnni~l~lii;nwie
fprintf(fid, "(connect a~d nandin.dl2)"1,i,i); newline;

fprintf(fid, "(connect band nandi nvl2)"i,ij); newline;

fprlinffd (onc nnotd ni7dl"ii;nwie

newline;

for (i=N; i>O; i--)

{pit~i,"cnetxr~ l adn.~~lii;nwie
fprintf(fid, "(connect xoro%d nandinY~d21)",i,i); newline;

newli e;

fprintf(fid, "(connect nandout~d2 invinWd)" ,i,i); newline;

I
newli e;

for (i=N; i>O; S.--)

f
fprintf(fid, "(connect invoutY.dl norinY~dl)",i,i); newline;

fprintf(fid, "(connect invoutY~d2 norinY~d2)",i,i); newline;

newline;
for (i=N; i>O; i--)

fprintf(fid, "(connect norout~d invin%3)" ,iji); newline:

fprintf(fid, "(connect invoutY~d3 caroutU~)" ,i,i); newline;

newline;

I
newline;

for (i=N; i>=2; i--)

fprintf(fid, "(connect carin%d carout*/.d)",i,i-1); newline;

fclose(fid);

CREATE A FLATTENED NETLIST REPRESENTATION AND A BINARY CIRCUIT

REPRESENTATION.

-- - - - - - - - - - - - - - - -- - - - - - - - - --1- - -

sprintf(niemory,"netlist 'I-snet YXs.sim -tcmos-pw",fb,fb);

system(memory);
sprintf (memory, "presim '/s.sim %/s",fb,fb);

system(IMemory);
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GMISR to Generate MISR

- - - - - - - - - - - - - - - - - - - - - - - - - -

PROGRAM NAME GMISR
INPUT Polynomial
OUTPUT Multiple Input Signature Register
APPLICATION To generate and simulate misr

for any polynomial.

#include <stdio .h>

#define fname-len 20
#define len 200
#define MAXDEG 300

#define newline fprintf(fid, 'An")
main(argc, argv)

mnt argc;
char **argv;

f
FILE *fid;
char filebase[fnaine-en], memory(40];
char fb[fname.len];

char fclfname-len];
char fsllfname-.len];

mnt i, j, N=0, T;
mnt xorIMAXDEG];
mnt max[16];
int M;
int cO = 1, ci = 1;
mnt c2 =1, c3 =1;
mnt c4 =1, cS =1;
mnt c6 = 1, c7 = 2;
mnt c8 =1, c9 = 1;

mnt k = 1, m = 1;
printfC"\n\tEnter file name

stcpyf(fb.s,filebase);
strcpy(fs ,filebase);
strcpy(fc,filebase);

printf("\n\tEnter degree of polynomial
scanf ("Xd",&N);
M = N;

-- - - - - -- - - - - -- - - - -

CREATE NETWORK DESCRIPTION FILE.
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strcat(filebase," .net"l);
fid= fopen(filebase,"W"1)
fprintf(fid, "(load \"lib-net\I)\nIt);
fprintf(fid, "(load \"xor2.net\")\n",);
fprintf(fid, "(load \"xor3.riet\")\nl);
newline;
fprintf(fid, "("); newline;
fprintf(fid, "node r ci )
newline; flewline;
for(i=1; i<=N; i++){

fprintf(fid, "1 ffo.d 1",i);
newline;

newline;
for(i=1; i<=N; i++){

fprintf(fid, " ffi~d 11,i);
newline;

newline;
for(i=i; i<=N; i++){

fprintf(fid, "inV~d ",i);
newline;

newline;
while (N ==0);

max[N] 1;
max[0] 1;

for (i =N-1; i>0; i--)

printf("\n\tX-*,d Enter coef. Ior 0
scanf("7'd" , &max [i])

if (max[i] != 1)
max[i]=o;

printf("I \n\n\tXZd +",;
for Ci=N-1; i>0; i--)

if (miax~i] =)

printf("X-/.d + 1,)

printf("1\n");
for (i=N-1; i>0; i--)

if (max~i] I
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f
k++;

I
else if (max[i] == 0)

for(j=1; j<=m; j++)

fprintf(fid, Ixorout2%d xorin2%Idl xorin2%d2 ",j ,j ,j);
newline;

newline;

fprintf(fid, "xorout3%/d xorin3%/dl xorin3Yd2 xorin3%/d3 "1,ilili ,i);

newline;

fprintf(fid, ")";newline; newline;

for(i=1; i<=N; i++) fprintf(fid, "(msff ffo/d ffi/d cl)\n",i, i);

newline;
for(i=1; i<=m; i++)

f
fprintf(fid, "(xor2 xorout2%d xorin2%/dl xorin2%d2 )\"Jigjj);

I
newline;

for(i=1; i<=k-1; i++)

f
fprintf(fid, "(xor3 xorout3%d xorin3%dl xorin3%/d2 xorin3/.d3)\n" ,i,i,i,i);

I
newline;

for (i=N-1; i>0; i--)

if (max[i] == 1)

fprintf(fid, "(connect ffi~d xorout3Yd)",N,c2); newline;

fprintf(fid, "(connect xorin37,dl ffoY~d)",c8,N-1); newline;

fprintf(fid, "(connect xorin3Yd2 ffo%d)",c8,M); newline;

fprintf(fid, "(connect xorin3%/d3 in~d)",c8,N); newline;

newline;
C8++;

N--;
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else if (max[i] == 0)

fprintf(fid, ,(connect ffi%d xorout2%/d)" ,N,c6); newline;

fprintf~fid, "(connect xorin2Xdl ffoY~d)" ,c9,N-1); newline;

fprintf(fid, "(connect xorin2X~d2 inY~d)",c9,N); newline;

newline;
N--;

fprintf(fid, "(connect ffiY~d xorout2%d)11,c4,c6); newline;

fprintf(fid, "(connect xorin2%dl ffo~d)11,c9,M); newline;

fprintf(fid, "(connect xorin2/,d2 in%d)" ,c9,N); newline;

fclose(fid);

-- - - - -- - - - -- - - --*- - - - -- - - - - - - - - -

CREATE A FLATTENED NETLIST REPRESENTATION AND BINARY CIRCUIT

REPRESENTATION.

*1 - - - - - - - - - - - - - -- - - - - - - - - - - - - - -

sprintf(memory,"netlist %s.net %s.sim -tcmos-pw",fb,fb);

system(memory);
sprintf(rnemory,"presim %s .sim 7.s" ,fb,fb);

system(memory);

-}-------



GTEST to Com-bine All Circuits

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

PROGRAM NAME GTEST
INPUT LFSR, CUT, and MISR.
APLLICATION To combine all circuits and simulate.

--include -- --- -- --<stdio--- -- ---.h>--

#include <mthi.h>

#define fname-len 20
#define ien 60
#define len 200

*define MAXDEG 300
#define newline fprintf(fid, "\n")
main~argc, argv)
mnt argc;
char **argv;

f
FILE *fid;
char filebase[fnanie-en], memory [40];
char fb~fname-.len], fc[fname-.lenJ, fsl~fname..lenJ;
char fa[fname-.len], fm(fname-len], flI~fnane-.len];
int i, j, k=1, N=O, M, T,1=0, P, R0O, r=1, rr=O;
mnt xor [MAXDEG];
int max [16];
printfC"\n\tEnter file name for lfsr
scanf ("U", f1) ;
printfC"\n\tEnter file name for full adder
scanf ("/.s',f a);
printf("\n\tEnter file name for misr
scanf ("%s" ,fm);
printf('\n\tEnter file name for bist
scanf("7.s",filebase);
strcpy(fb,filebase);
strcpy~fs ,filebase);
strcpy~fc,filebase);

printf("\n\tEnter number of bits
scanf ("Xd" ,&N);
R = 2*N;
for(i=1; i<=R; i.+)

r =2*r;

r r-1;

rr 2*r;
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M =N+1;

T =N;

P =N;

CREATE NETWORK DESCRIPTION FILE.

strcat(filebase," .net");
fid= fopen(filebase,"W");

fprintf (fid, "(load \"lib .net\"1)\n");
fprintf(fid, "(load \"Y.s.net\")\n",fa);
fprintf(fid, "(load \"Ys.net\")\n",fm);
fprintf(fid, "(load \"YBnet\")n",fl);
newline;

for (i=2*N; i>O; i=i-2)

fprintf(fid, "(connect ffout7.d aY.d)" ,i,i/2); newline;

newline;
for (i=2*N-1; i>O; ii-2)

fprintf(fid, "(connect ffout7,d b*/d)" ,i,N); riewline;

N--;

newline;
fprintf(fid, '(connect caroutI~d in?,d)",T,M); newline;

for (i=M-i; i>C; i--)

f~rintf(fid, "(connect sumi'.d in'hd)",i,i); newline;

newline;
fclose(fid);

-- - - - - - -- - - - - - -- - - - - - -

CREATE A FLATTENED NETLIST REPRESENTAIDN.

sprintf(memory,"netlist 'ts.net '/s.sim -tcmos-pw",fb,fb);

Bystem(memory);
sprintf(memory,"preeim '/s.sim '/s" ,fb,fb);

system(memory);

CONVERT A SIMPLE TIMING FILE IN A RHL COMPATIBLE FORMAT.
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strcat(fc," .stim");

fidfopen(fc,"w");
fprintf(fid, "time-range 0 ?.d",rr); newline;
fprintf(fid, "carini 2 1 0 1 1"1); riewline;
fprintf(fid, "input 0 h 0 h 1 1 2 1 3 1 4"); newline;
fprintf(fid, "ci 2 1 0 h I"); newline;
fprintf(fid, "report 1 0"); newline;
fclose(fid);
Bprirltf(memory, "gen-.time '/..stim Ys.time",fs,fs);
system(memory);

CREATE A FILE THAT CONTAINS A SEQUENCE OF RNL COMMAND AND SIMULATE.

strcat(f b,". .1");
fid~fopen(fb, "v");
fprintf(fid, "(load \"uwstd.1\")"); newline;
fprintf(fid, "(load \"uwsiml\")"); newline;
fprintf(fid, "(log-file \"/.%s-rlog\")"1,fs); riewline;
fprintf(fid, "(read-network \".s\")",fs); newline;
fprintf(fid, "(setq incr 100)"); newline;
fprintf(fid, "(sim-init)"); newline;
fprintf(fid, "(sim-init)"); newline;
fprintf(fid, "(def-report 1(\"1 \" "1);

for(i=M; i>0; i--){

fprintf(fid, "ffoI~d ",i);

for~=N; >O; --}

fprintf(fid, "sum/d ",i);

fprintf(fid, "))"); newline;
fprintf(fid, "(setq lanalyze 0)"); newline;
fprintf(fid, "(wr-format)"); newline;
fprintf(fid, "(load \"'7,time\")",fs); newline;
fprintf(fid, "exit"); newlirie;
fclose(fid);

sprintf(memory, "rnl %s-l",fs);
system(memory);

sprintf (memory, "print %/s .rlog" ,fs);
system(memory);
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APPENDIX B
Network Description Files

lib.net - Library File

; (1) CMOS INVERTER

; (2) NODES IN THE NETWORK

(node in out)
; (3) P-CHANNEL

(ptrans in out Vdd 8 8)
; (4) N-CHANNEL

(etrans in GND out 4 8)
; (5) CAPACITANCE
(capacitance out 0.03)

(1)MACRO DEFINITION FOR CMOS LATCH

(2)NAMING THE MACRO AND ITS PARAMETERS

(macro latch (out in cl cl-)
; (3)DECLARATION OF THE NODES LOCAL TO THE LATCH
(local n1)
; (4)FIRST CLOCKED CMOS INVERTER
(clkinv n1 in cl cl-)
; (S)UNLOCKED CMOS INVERTER
(cinvert out ni)
; (6)SECOND CLOCKED CMOS INVERTER
(clkinv ni out cl- cl)

(7)CLOSING PARENTHESIS FOR THE MACRO
)

* (i)MACRO DEFINITION FOR CMOS MASTER SLAVE FLIP-FLOP

(2)NAMING THE MACRO AND ITS PARAMETER

(macro msff (out in cl)
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(3)DECLARATION OF THE NODES LOCAL TO FLIP-FLOP

(local n1 n2)

(4FIRST LATCH
(latch ni in ci n2)

;(S)SECOND LATCH

(latch out n1 n2 cl)

;(6)CMOS INVERTER

(cinvert n2 ci)

(7CLOSING PARENTHESIS FOR THE MACRO
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XOR2.net - 2 Input XOR Gates

;macro name

(macro xor2 (out i i12)

;local node
(local ii- i2- pi p2 p3 p4)

inverter

(cinvert ii- ii)

(cinvert i2- i2)

;pull up

(ptrans il- p1 Vdd 8 8)

(ptrans i2 out p1 8 8)
(ptrais il p2 Vdd 8 8)
(ptrans i2- out p2 8 8)

;pull down

(etrans ii- p3 out 4 8)
(etrans i2- GND p3 4 8)

(etrans il p4 out 4 8)
(etrans i2 GND p4 4 8)

;closing



XOR3.net - 3 Input XOR Gates

;macro name

(macro xor3 (out a b c)

;local node

(local a- b- c- pi p2 p3 p4 p5 p6 p7 p8)

;inverter

(cinvert a- a)

(cinvert b- b)

(cinvert c- c)

;pull up

(ptrans a pl Vdd 8 8)
(ptrans a- p2 Vdd 8 8)

(ptrans a- p3 Vdd 8 8)
(ptrans a p4 Vdd 8 8)
(ptrans b- out pl 8 8)

(ptrans b out p2 8 8)

(ptrans c out p3 8 8)
(ptrans c- out p4 8 8)

;pull down

(etrans a- p5 out 4 8)
(etrans b- p5 p6 4 8)

(etrans c- GND p6 4 8)
(etrans a p7 out 4 8)
(etrans b p7 p8 4 8)
(etrans c GND p8 4 8)

;closing

)
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Ifsr8.net - 8 Stage LFSR

(load "lib.net")
(load "xor2.net")

node ci

ff out i

ffout2
ffout3
ffout4
ffouts

f fout6
ffout7
ffout 8

ffinl

ffin2

ffjn3

ffin4

ffinS

ffin6
ffin7

ffin8

input

xorouti xorinil xorin12

xorout2 xorin2l xorin22

xorout3 xorin3l xorin32

xorout4 xorin4l xorin42

(insff ffouti ffinI ci)

(msff ffout2 ffin2 ci)

(msff ffout3 ffin3 ci)

(msff ffout4 ffin4 ci)

(nisff ffout5 ffin5 ci)

(nisfi if out6 ffin6 ci)

(msff ffout7 ffin7 ci)

(msff ffout8 ffin8 ci)

(xor2 xorouti xorinIl xorin12)

(xor2 xorout2 xorin2l xorin22)

(xor2 xorout3 xorin3l xorin32)
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(xor2 xorout4 xorin4l xorin42)

(connect ffin8 I fout7)

(connect ffin7 xoroutl)
(connect xorinli ffout6)

(connect xorin12 ffout8)

(connect ffin6 xorout2)

(connect xorin2l ffout5)

(connect xorin22 ffout8)

(connect ff inS ffout4)

(connect ffin4 xorout3)

(connect xorin3l ffout3)

(connect xorin32 ffout8)

(connect ffin3 ffout2)

(connect ffin2 ffoutl)

(connect ffinl xorout4)

(connect xorin4l ffoutB)

(connect xorin42 input)
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gadd4.net - 4 Bit Fault-Free full-Adder

(node
a4 b4 carin4 carout4 Buln4

a3 b3 carin3 carout3 suin3
a2 b2 carin2 carout2 sum2
al bI carinI carouti suml

invin4i invin42 invin43

invin3l invin32 invin33

invin2l invin22 invin23

invinhi invin12 invin13

invout4l invout42 invout43
invout3l invout32 invout33

invout2l invout22 invout23
invoutli invoutl2 invout13

norin4l norin42

norin3l norin32
norin2l norin22

norinil norin12

norout4

norout3

no rout 2

norout 1

xoro4l xoro42

xoro31 xoro32
xoro2l xoro22

xoroll xoro12

xori411 xori4i2 xori42l xori422

xori3hl xori3l2 xori32l xori322

xori21t xori212 xori221 xori222
xorilll xoril2 xoril2l xori122

nandout4l nandout42
nandout31 naiidout32

nandout2l nandout22
nandoutil nandout12



nandin4li nandin412 nandin421 nandin422

nandin3ll nandiri312 nandin321 nandin322

nandin2ll nandin212 riandin22i nandin222

nandinill nandin.1l2 nandinl2l nandin122

)xr oolxoi1 oi1

(xor2 xoro42 xori4ll xori42

(xor2 xoro42 xori31l xori412

(xor2 xoro3l xori32l xori32

(xor2 xoro2 xori2ll xori212

(xor2 xoro2l xori221 xori22

(xor2 xoroll xorilil xorill2)
(xor2 xorol2 xoril2l xoril22)

(cnand nandout4l nandin4ll nandin4l2)

(cnand nandout42 nandin421 nandin422)
(cnand nandout3l nandin3ll nandin3l2)
(cnand nandout32 nandin321 naxkdin322)
(cnand nandout2l nandin2ll nandin2l2)
(cnaxid nandout22 nandin22l nandin222)
(cnand nandoutil nandinlil nandinIl2)
(cnand nandouti2 nandinl2l nandin122)

(nor norout4 norin4l norin42)

(nor norout3 norin3l norin32)
(nor norout2 norin2i norin22)

(nor norouti norinil norinl2)

(cinvert invout4l invin4l)
(cinvert invout42 invin42)

(cinvert invout43 invin43)
(cinvert invout3l invin3i)
(c invert invout32 invin32)

(cinvert invout33 invin33)

(cinvert invout2l invin2l)
(cinvert invout22 invin22)

(cinvert invout23 invin23)

(cinvert invoutil invinli)
(cinvert invoutl2 invinl2)
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(cinvert invout13 invinl3)

(connect a4 xori41l)
(connect b4 xori412)
(connect carin4 xori421)
(connect xoro4l xori422)
(connect xoro42 sum4)

(connect a3 xori311)
(connect b3 xori312)
(connect carin3 xori321)
(connect xoro3l xori322)
(connect xoro32 sum3)

(connect a2 xori211)
(connect b2 xori212)
(connect carin2 xori221)
(connect xoro2l xori222)
(connect xoro22 sum2)

(connect al xorilll)
(connect bl xorill2)
(connect carinl xoril21)
(connect xoroll xoril22)
(connect xorol2 suml)

(connect a4 nandin4li)
(connect b4 nandin412)
(connect nandout4l invin4l)

(connect a3 nandin3ll)
(connect b3 nandin312)
(connect nandout3l invin3l)

(connect a2 nandin2ll)
(connect b2 nandin212)
(connect nandout2i invin2l)

(connect al nandinlll)
(connect bl nandinll2)
(connect nandoutil invinil)

(connect xoro4l nandin421)
(connect carin4 nandin422)
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(connect nandout42 invin42)
(connect xoro3l nandin321)
(connect carin3 nandin322)

(connect nandout32 invin32)
(connect xoro2l nandin221)
(connect carin2 nandiri222)

(connect nandout22 invin22)
(connect xoroil nandinl2l)
(connect carini nandin122)

(connect nandout12 invinl2)

(connect invout4l norin4l)
(connect invout42 norin42)
(connect invout3i norin3l)
(connect invout32 norin32)
(connect invout2l norin2l)
(connect invout22 norin22)
(connect invoutl norini)
(connect invoutl2 norinl2)

(connect norout4 invin43)
(connect invout43 carout4)

(connect norout3 invin33)
(connect invout33 carout3)

(connect norout2 invin23)
(connect invout23 carout2)

(connect norouti invinl3)
(connect inv-out13 carouti)

(connect carin4 carout3)
(connect carin3 carout2)
(connect carin2 carouti)
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badd4O.net - 4 Bit s-a-O Fault Full-Adder

(load "lib.net")
(load Ixor2.reth1)

(node
a4 b4 carin4 carout4 swti4
a3 b3 carin3 carout3 sum3
a2 b2 carin2 carout2 sum2
al bi carini carouti suml

invin41 invin42 invin43
invin3i invin32 invin33
invin21 invin22 invin23
invinhi invin12 invin13

invout41 invout42 invout43
invout31 invout32 invout33
invout2l invout22 invout23
invoutli invout12 invout13

norin4l norin42
norin31 norin32
norin2l norin22
norinll norin12

norout4

norout3
norout2

norout 1

xoro4l xoro42
xoro31 xoro32
xoro2l xoro22

xoroll xorol2

xori411 xori4l2 xori421 xori422
xori3ll xori3l2 xori32i xori322
Xori211 xori212 xori22l xori222
xorilil xori1l2 xoril2l xori122

nandout4l nandout42
nandout3l nandout32
nandout2l nandout22
nandoutli nandoutl2
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nandin4ll nandin412 nandin421 nandin422
nandin31l nandin312 nandin321 nandin322
nandin21l nandin212 nandin22l nandin222
nandinll naxidinI12 nandinl2l nandin122

)xr oolxril oi1

(xor2 xoro4l xori4ll xori4l2 )

(xor2 xoro42 xori42l xori42

Cxor2 xoro32 xori321 xori3l2

(xor2 xoro2l xori2ll xori212)
(xor2 xoro22 xori221 xori222)

(xor2 xoroli xorilil xori112)
(xor2 xorol2 xoril21 xorii22)

(cnand nandout4l nandin4ll nandin412)
(cnand nandout42 nandin421 nandin422)
Ccnand nandout3l nandin3ll nandin312)
(cnand nandout32 nandin321 nandin322)
(cnand nandout2l nandin2ll nandin2i2)
(cnand nandout22 nandin221 nandin222)
(cnand nandoutli nandinhIl nandinhi2)
(cnand nandout12 nandinl2i nandini22)

(nor norout4 norin4l norin42)
(nor norout3 norin3i norin32)
(nor norout2 norin2l norin22)
(nor noroutl norinll norin12)

(cinvert invout4l invin4l)
(cinvert invout42 invin42)

(cinvert invout43 invin43)

(cinvert invout3l invin3l)

(cinvert invout32 invin32)
(cinvert invout33 invin33)

(cinvert invout2l invin2i)

(cinvert invout22 invin22)

(cinvert invout23 invin23)

(cinvert invoutli invinil)
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(cinvert invoutl2 invini2)

(cinvert invout13 invinl3)

(connect a4 xori4ll)

(connect b4 xori412)
(connect carin4 xori421)

(connict xoro4l xori422)

(connect xoro42 sum4)

(connect a3 xori3ll)

(connect b3 xori312)

(connect carin3 xori321)

(connect xoro31 xori322)

(connect xoro32 sum3)

(connect a2 xori21)

(connect b2 xori212)

(connect carin2 xori221)

(connect xoro2l xori222)

(connect xoro22 sum2)

(connect al xorilll)

(connect bl xorill2)

(connect GND xoril2l)

(connect xoroll xoril22)

(connect xoro12 suml)

(connect a4 nandin4l)

(connect b4 nandin412)

(connect nandout4l invin4l)

(connect a3 nandin31l)

(connect b3 nandin312)

(connect nandout3l invin3l)

(connect a2 nandin21l)

(connect b2 nandin212)

(connect nandout2l invin2l)

(connect al nandin1il)

(connect bl nandinl12)

(connect nandoutl invinl)

(connect xoro4l nandin421)

(connect carin4 nandin422)
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(connect nandout42 invin42)

(connect xoro3l nandin321)

(connect carin3 nandin322)

(connect nandout32 invin32)

(connect xoro2l nandin221)

(connect carin2 nandin222)

(connect nandout22 invin22)

(connect xoroll nandinl2l)

(connect carini nandin122)

(connect nandouti2 invinl2)

(connect invout4i norin4l)

(connect jnvout42 norin42)

(connect jnvout3l norin3l)

(connect invout32 norin32)

(connect invout2l norin2l)

(connect invout22 norin22)

(connect invoutli norinli)

(connect invout12 norinl2)

(connect norout4 invin43)

(connect invout43 carout4)

(connect norout3 invin33)

(connect invout33 carout3)

(connect norout2 invin23)

(connect invout23 carout2)

(connect norouti invinl3)

(connect invout13 carouti)

(connect carin4 carout3)

(connect carin3 carout2)

(connect carin2 carouti)
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badd4l.net - 4 Bit s-a-i Fault Full-Adder

(load "lib.net")

(load "xor2.nettt)

(node
a4 b4 carin4 carout4 Buln4

a3 b3 carin3 carout3 sum3
a2 b2 carin2 carout2 suin2
al bI carinI carouti sumi

invin4i invin42 invin43
invin3l invjn32 invin33
invin2l invin22 invin23
invinhl invjn12 invin13

invout4l invout42 invout43
invout3l invout32 invout33
invout2l invout22 invout23
invoutil invout12 invout13

norin4l norin42
norin31 norin32
norin2l norin22
norinil riorinI2

norout4

norout3

norout2

norout 1

xoro4l xoro42
xoro3l xoro32
Xoro2l xoro22
xoroll xorol2

xori4hl xori412 xori421 xori422
xori31l xori3l2 xori321 xori322
xori2hl xori2l2 xori221 xori222
xorilil xorihl2 xoril2l xoril22

nandout4l nandout42
nandout3l nandout32
naxidout2l nandout22
nandout 11 nandout 12
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nandin41l nandin4l2 nandin42l nandin422

nandin3il nandin312 naxidin32l nandin322

nandin2ll nandin2l2 nandin221 nandin222.
nandinIll nandinll2 nandinl2l nandin122

)xr oolxril oi1

(xor2 xoro42 xori4ll xori422 )

(xor2 xoro42 xori42l xori422 )

(xor2 xoro32 xori3ll xori32

(xor2 xoro2 xori2ll xori22)

(xor2 xoro22 xori2il xori22

(xor2 xoroll xorilll xorill2)

(xor2 xorol2 xoril2l xoril22)

(cnand nandout4l nandin4ll nandin412)

(cnand nandout42 nandin421 nandin422)
(cnand nandout3l nandin3ll nandin3l2)
(cnand nandout32 nandin321 nandin322)
(cnand nandout2l nandin2ll nandin2l2)
(cnand nandout22 nandin221 nandin222)
(cnand nandoutli nandinll nandinll2)
(cnand nandout12 nandinl2l nandini22)

(nor norout4 norin4i norin42 )
(nor norout3 norin3l norin32 )
(nor norout2 norin2i norin22 )
(nor norouti norinhi norin12 )

(cinvert invout41 invin4l)
(cinvert invout42 invin42)

(cinvert invout43 invin43)

(cinvert invout3i invin3l)
(cinvert invout32 invin32)

(cinvert invout33 invin33)

(cinvert invout2l invin2l)

(cinvert invout22 invin22)
(cinvert invout23 invin23)

(cinvert invouthi invinll)
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(cinvert invout12 invinl2)
(cinvert invout13 invin13)

(connect a4 xori4ll)

(connect b4 xori412)

(connect carin4 xori421)
(connect xoro4l xori422)

(connect xoro42 sum4)

(connect a3 xori3li)

(connect b3 xori312)

(connect carin3 xori321)

(connect xoro3l xori322)
(connect xoro32 sum3)

(connect a2 xori2ll)

(connect b2 xori212)

(connect carin2 xori221)
(connect xoro2l xori222)

(connect xoro22 sum2)

(connect al xoril1l)

(connect bi xorill2)

(connect Vdd xoril2l)

(connect xoroll xoril22)

(connect xoroi2 sumi)

(connect a4 nandin41l)

(connect b4 nandin412)

(connect nandout4l invin4l)

(connect a3 nandin3ll)

(connect b3 nandin312)

(connect nandout3l invin3l)

(connect a2 nandin2ll)
(connect b2 nandin212)

(connect nandout2l invin2l)

(connect al nandin1il)

(connect bl nandinl12)

(connect nandoutIl invin1l)

(connect xoro4l nandin421)

(connect Vdd nandin422)
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(connect nandout42 invin42)

(connect xoro3l nandin321)

(connect carin3 nandin322)

(connect nandout32 invin32)

(connect xoro2l nandin22i)

(connect carin2 nandin222)

(connect nandout22 invin22)

(connect xoroll nandinl2l)

(connect carini nandin122)

(connect nandout12 invinl2)

(connect invout4l norin4l)

(connect invout42 norin42)
(connect invout3l norin3l)

(connect invout32 norin32)

(connect invout2i norin2l)

(connect invout22 norin22)

(connect invoutil norinli)
(connect invout12 norinl2)

(connect norout4 invin43)

(connect invout43 carout4)

(connect norout3 invin33)

(connect invout33 carout3)

(connect norout2 invin23)
(connect invout23 carout2)

(connect norouti invini3)
(connect invout13 carouti)

(connect carin4 carout3)

(connect carin3 carout2)
(connect carin2 carouti)
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i-isr5.net - 5 Stage MISR

(load "lib.riet")
(load "xor2.net")
(load "xor3.net")

node r ci

ffol
ffo2
ffo3
ffo4
ff05

ff il
ff i2
ff i3
ff i4
ffis

inl
in2
in3
in4
in5

xorout2l xorin211 xorin212
xorout22 xorin22l xorin222
xorout23 xorjn231 xorin232
xorout24 xorin24l xorin242

xorout3l xorjn311 xorin312 xorin3l3

(msff ff01 ffil ci)
Cxtiff ffo2 ffi2 ci)
(msff ffo3 ffi3 ci)
('nsff ffo4 ffi4 ci)
(rnsff ffo5 ffis ci)

(xor2 xorout21 xorin2il xorin2l2)
(xor2 xorout22 xorin221 xorin222)
(Xor2 xorout23 xorin23l xorin232)
(xor2 xorout24 xorin241 xorin242)
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(xor3 xorout3l xorin3ll xorin312 xorin313)

(connect ffiS xorout2l)
(connect xorin2ll ffo4)
(connect xorin2l2 ins)

(connect ffi4 xorout22)

(connect xorin221 ffo3)
(connect xorin222 in4)

(connect Mf3 xorout3l)
(connect xorin3ll ffo2)
(connect xorin3l2 ffoS)
(connect xorin313 in3)

(connect Mf2 xorout23)
(connect xorin231 ffoi)
(connect xorin232 in2)

(connect ff ii xorout24)
(connect xorin24i ffo6)
(connect xorin242 inl)
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